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Abstract. We repurpose the main theorem of [Thomas and Williams, 2014] to prove
that modular sweep maps are bijective. We conclude that the general sweep maps
defined in [Armstrong, Loehr, and Warrington, 2014] are bijective. As a special case of
particular interest, this gives the first proof that the zeta map on rational Dyck paths is
a bijection.

Résumé. Nous adaptons le théorème principal de [Thomas et Williams 2014] pour
démontrer qu’une version modulaire des applications au balai (« sweep maps ») est
bijective. Nous déduisons que les applications au balai générales de [Armstrong, Loehr
et Warrington, 2014] sont bijectives. Comme cas d’intérêt particulier, cela donne la
première démonstration que l’application zeta sur les chemins de Dyck rationaux est
une bijection.
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1 Introduction

The sweep map of [2] is a broad generalization of the zeta map on Dyck paths,
originally defined by J. Haglund and M. Haiman in the context of the study of diagonal
harmonics. Proving bijectivity of the sweep map was an open problem with significant
implications in the study of rational Catalan combinatorics (see Section 2). We solve this
problem in Theorem 5.1.

We let m, N ∈ N, and we write A for the set of words of length N on the alphabet
{0, 1, 2, . . . , m − 1}. For a word w = w1w1 · · ·wN ∈ A and for 1 ≤ j ≤ N, define the
modular level of the letter wj to be `j := ∑

j
i=1 wi mod m.

The modular sweep map is the function sweepm : A → A that sorts w ∈ A according
to its modular levels as follows: initialize u = ∅ to be the empty word. For k = m −
1, . . . , 2, 1, 0, read w from right to left and append to u all letters wj whose level `j is equal
to k. Define sweepm(w) := u.

Example 1.1. Let m = 5 and N = 7. We compute the modular levels of the word
w = 3113214 ∈ A by summing the initial letters of w modulo m and obtain the image

This is an extended abstract, outlining the main results in the preprint [18].
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u := sweepm(w) by sorting according to the levels (and then discarding the information
about the levels).

` : 3 4 0 3 0 1 0
w : 3 1 1 3 2 1 4

7−−−→
sweepm

` : 4 3 3 1 0 0 0
u : 1 3 3 1 4 2 1

.

Our main result—proven in Section 4.3—is that sweepm is invertible.1

Theorem 1.2. The modular sweep map is a bijection A → A.

The remainder of this abstract is organized as follows. We give a brief history in Sec-
tion 2 by recalling the different contexts in which the modular sweep map has appeared.
In Section 3.1, we define the modular presweep map. This map differs from the modu-
lar sweep map in that it preserves the additional information of the modular levels. It
is easy to invert the modular presweep map, as described in Section 3.2; partitions for
which the inverse modular presweep map concludes are called successful partitions.

In Section 4.1, we introduce the notion of equitable partitions and show that a suc-
cessful partition is equitable. Using an algorithm communicated to us by F. Aigner,
C. Ceballos, and R. Sulzgruber, we construct the rightmost equitable partition in Theo-
rem 4.4. (For the purposes of this abstract, we have preferred to use this algorithm rather
than our original algorithm, which is roughly dual to it.) Theorem 4.6 concludes that the
rightmost equitable partition and successful partition are the same.

We apply the results of Sections 3 and 4 to prove Theorem 1.2—that the modular
sweep map is a bijection—in Section 4.3. In Section 5, we use Theorem 1.2 to invert the
sweep map of [2] on words with letters in Z (rather than Z/mZ), and we conclude that
the zeta map is bijective on Dyck paths and rational Dyck paths.
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2 History: Diagonal Harmonics and the Zeta Map

In their study of the space DHn of diagonal harmonics [9], A. Garsia and M. Haiman
defined a rational function Cn(q, t), symmetric in q and t, with the property that Cn(1, 1)
= 1

n+1(
2n
n ). They conjectured that Cn(q, t) was actually a polynomial in q and t with

nonnegative coefficients—specializing one of the statistics to 1, they gave a combinatorial
interpretation of this polynomial using the area statistic on n-Dyck paths (lattice paths
from (0, 0) to (n, n) that stay above the diagonal y = x):

Cn(q, 1) = Cn(1, q) = ∑
w an n-Dyck path

qarea(w).

The search was on to find a statistic that manifested nonnegativity—an unknown
statistic with the property that

Cn(q, t) = ∑
w an n-Dyck path

qarea(w)tunknown(w).

In [13], “after a prolonged investigation of tables of Cn(q, t),” J. Haglund invented
the idea of a bounce path, which he used to propose exactly such a statistic. Garsia and
Haglund subsequently used these ideas to prove nonnegativity of Cn(q, t) in [8].

As the legend goes, Garsia sent a cryptic email to Haiman announcing Haglund’s
discovery—without providing any specifics as to what the statistic was. Shortly af-
ter, Haiman announced that he, too, had produced the desired statistic.2 Remarkably,
Haglund’s statistic and Haiman’s statistic were different. In modern language, Haglund’s
statistic is known as bounce, while Haiman’s is dinv. Haiman and Haglund quickly de-
veloped a bijection from n-Dyck paths to themselves—the zeta map ζ (see Section 5) [1,
13]—such that

(area(w), bounce(w)) = (dinv(ζ(w)), area(ζ(w))).

As Dyck paths have been generalized (say, as in Section 5, to lattice paths from (0, 0)
to (a, b) that stay above the main diagonal), so too have these zeta maps [15, 7, 11, 14].
A modern perspective is that there is only one statistic—area—along with a generalized
zeta map [2]. If such a zeta map is bijective on a set of generalized Dyck paths D, one

2Garsia subsequently expressed regret that he didn’t send this email to Haiman several years earlier.
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can combinatorially define polynomials

D(q, t) := ∑
w∈D

qarea(w)tarea(ζ(w)),

so that (by construction) D(q, 1) = D(1, q). Surprisingly, these polynomials also often
happen to be symmetric in q and t.

Proving invertibility of these generalized zeta maps has been a traditionally difficult
problem; combinatorially proving (q, t)-symmetry has been intractable. Most recently,
D. Armstrong, N. Loehr, and G. Warrington have found a very general version of the
zeta map, which they called sweep maps [2, Section 3.4].

3 Presweeping and Its Inverse

We will factor the modular sweep map as the composition of two maps: the modular
presweep map and the forgetful map. In this section, we define the modular presweep
map and its inverse.

Adhering to the notation in [17], we prefer to think of the modular levels from the
introduction as partitioning the word u into blocks. Define a partitioned word for u ∈ A to
be a partition u∗ of u into m words u∗ = u∗m−1|u∗m−2| · · · |u∗0—where we use the block divider
symbol | to separate the blocks—so that u = u∗m−1 · · · u∗0 is their concatenation. We call
the word u∗k the kth block and, with apologies to the combinatorics of words community,
we write A∗ for the set of all partitioned words of A. We call u the underlying word of
the partitioned word u∗. We may use either the symbol · or ∅ to denote an empty block.
If the i-th letter ui of u belongs to the k-th block u∗k in the partitioned word u∗, we let
block(u∗, i) := k. We fix the notation |u| := ∑N

i=1 ui and |u|m = `N = |u|mod m.

3.1 The Modular Presweep Map

The modular presweep map is the function presweepm : A ↪→ A∗ that sorts w ∈ A into blocks
according to its levels. Precisely, for k = m− 1, . . . , 2, 1, 0, first initialize u∗ := ·| · | · · · |·
to be the empty partitioned word, then read w from right to left and append to u∗k all

letters wj whose level `j =
(

∑
j
i=1 wi mod m

)
is equal to k. In other words, u∗k is obtained

by extracting all letters of level k from u and reversing their relative order.

Example 3.1. As in Example 1.1, let m = 5, N = 7, and w = 3113214 ∈ A. We compute
the modular levels of a word w ∈ A by summing the initial letters of w modulo m (below,
left). We compute the modular presweep of w by sorting by levels, reading w from right
to left. Placing letters with the same level in a block, we obtain the corresponding
partitioned word u∗ := presweepm(w) in A∗ (below, right).
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` : 3 4 0 3 0 1 0
w : 3 1 1 3 2 1 4

7−−−−−→
presweepm

` : 4 3 3 2 1 0 0 0
u∗ : 1 3 3 · 1 4 2 1

3.2 The Inverse Modular Presweep Map

The inverse modular presweep map is the function inverse_presweepm : A∗ → A such that

inverse_presweepm ◦ presweepm = idA,

where idA(w) = w is the identity function on A. As explained in [2, Section 5.2] and
in [17, Algorithm 2 and Figure 8], if we know how to associate the correct levels to
u := sweepm(w), it is easy to reconstruct w.

Suppose we have the partitioned word u∗ := presweepm(w). Since the letters of w were
just rearranged to make u∗, we can determine `N = |w|m = |u|m from u∗. As we swept
w from right to left, the last letter of w is therefore the first letter in u∗`N

. Remove this
letter from u∗. Subtracting this letter from `N gives `N−1, and we obtain the (N − 1)st
letter of w as the first remaining letter in block `N−1. In general, for i = 1, 2, . . . , N we
have already computed `N−i+1; subtracting the leftmost remaining letter in u∗`N−i+1

from
`N−i+1 (and removing it from u∗`N−i+1

) gives `N−i. Pseudo-code for inverse_presweepm is
given in Algorithm 1.

Input: A partitioned word u∗ = u∗m−1|u∗m−2| · · · |u∗0 ∈ A∗.
Output: A word w = w1w2 · · ·wN ∈ A or a subword of u∗.
Let `N :=

(
∑N

j=1 uj mod m
)

and w := ∅;

for i = 1 to N do
if u∗`N−i+1

6= ∅ then
Remove the first letter of u∗`N−i+1

and assign it to wN−i+1;
Prepend wN−i+1 to w;
Let `N−i := (`N−i+1 − wN−i+1 mod m);

end
else

Return u∗

end
end
Return w;

Algorithm 1: inverse_presweepm : A∗ ↪→ A.

We say that Algorithm 1 succeeds on a partitioned word u∗ if it returns an element of
A, and we say that it fails if it returns an element of A∗. We call a partitioned word u∗
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on which Algorithm 1 succeeds a successful partition of the underlying word u. Since Al-
gorithm 1 undoes presweepm one step at a time, we conclude that inverse_presweepm is the
left inverse of presweepm.

Example 3.2. To reverse Example 3.1, we compute as follows. We start with the parti-
tioned word u∗:

` 4 3 3 2 1 0 0 0
u∗ 1 3 3 · 1 4 2 1

.

We find `N = |u|m = 0. Then we iterate:

i u∗ `N−i w

0 1|33| · |1|4̇21 0 ·
1 1|33| · |1̇|421 1 4
2 1|33| · |1|42̇1 0 14
3 1|3̇3| · |1|421 3 214
4 1|33| · |1|421̇ 0 3214
5 1̇|33| · |1|421 4 13214
6 1|33̇| · |1|421 3 113214
7 1|33| · |1|421 0 3113214

.

Comparing with Example 3.1, we see that we have recovered w.

3.3 Forgetting

We now obtain the modular sweep map from the modular presweep map by forgetting
the information of the blocks. The forgetful map is the function

forget : A∗ → A
forget

(
u∗m−1|u∗m−2| · · · |u∗0

)
= u∗m−1u

∗
m−2 · · · u∗0

obtained by concatenating all the blocks of u∗ ∈ A∗. Thus, the modular sweep map
of Section 1 may be written as the composition

sweepm = (forget ◦ presweepm) : A → A.

Example 3.3. Continuing with Example 3.1, we forget the partitioning to obtain the
modular sweep u := sweepm(w) of w to be

(forget ◦ presweepm)(3113124) = forget (1|33| · |1|421) = 1331421.

Thus, the problem of inverting the modular sweep map has been reduced to showing
that there exists a unique successful partition u∗ ∈ A∗ for each word u ∈ A. We do this
in the next section.
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4 Equitable Partitions and the Successful Partition

We already solved the problem of constructing the successful partition in [17], where we
studied a composition

f ◦ p,

where f is the map forget and p is a map very slightly different from presweepm. In
particular, our notions here of a successful partition and the forgetful map coincide with
those in [17].

4.1 Equitable Partitions

We expand a partitioned word u∗ into an N ×m balancing array

Mu∗ = (Mu∗
i,j ) 1≤i≤N

m−1≥j≥0

defined by

Mu∗
i,j :=

{
� if j ∈ {block(u∗, i), block(u∗, i)− 1, . . . , block(u∗, i)− ui + 1}mod m,
· otherwise,

Write |u| = ∑N
i=1 ui = qm+ r with 0 ≤ r < m. We say that column j (for m− 1 ≥ j ≥ 0)

of Mu∗ is equitably filled if:

• r ≥ j ≥ 1 and column j has q + 1 copies of the symbol �, or if

• j = 0 or j > r, and column j contains q copies of �.

If a column has (strictly) fewer copies of the symbol � than it would to be equitably
filled, we say it is less than equitably filled; similarly, when a column has (strictly) more
copies of � we say that it is more than equitably filled. In particular, if r = 0, then every
equitably filled column has q copies of �. We say that u∗ is an equitable partition if each
of the columns of Mu∗ is equitably filled.

The motivation for this definition is the following lemma.

Lemma 4.1. Any successful partition u∗ is an equitable partition.

Proof. We can construct all successful partitions as follows [17, Definition 7.5]. Define an
infinite complete m-ary tree T ∗m by

1. The zeroth rank consists of the empty successful partition u∗, given by u∗k = ∅ for
m− 1 ≥ k ≥ 0.
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2. The children of a successful partition u∗ = u∗m−1| . . . |u∗0 are the m successful parti-
tions obtained by prepending i (mod m) to u∗i+|u|m .

Then it is easy to see that all partitioned words in T ∗m are equitable, and that all
successful partitions appear in T ∗m [17, Lemma 7.2]. (It is not yet clear that the images of
the words in T ∗m under the forgetful map are actually distinct.)

Example 4.2. The equitable partitions 13|31|4|2|1 and 1|33| · |1|421 have corresponding
balancing arrays

j
4 3 2 1 0

i

1 � · · · ·
2 � � � · ·
3 · � � � ·
4 · � · · ·
5 � · � � �
6 · · · � �
7 · · · · �

and

j
4 3 2 1 0

i

1 � · · · ·
2 · � � � ·
3 · � � � ·
4 · · · � ·
5 � � � · �
6 � · · · �
7 · · · · �

.

Since |u| = 15 = 3 · 5 + 0, any equitable filling has three copies of � in each column j.

4.2 The Rightmost Partition

Given u, we first prove the existence of a particular equitable partition.

Definition 4.3. A rightmost equitable partition is an equitable partition u∗ such that any
other equitable partition v∗ has block(v∗, i) ≥ block(u∗, i) for all i.

Theorem 4.4. Any u ∈ A admits a unique rightmost partition rightmost(u).

Proof Outline. We claim that Algorithm 2 constructs the unique rightmost equitable par-
tition.3 One first shows that Algorithm 2 does not attempt any illegal moves, and so
returns an equitable partition. One then shows that Algorithm 2 outputs the unique
rightmost equitable partition u∗.

Example 4.5. We illustrate Algorithm 2 applied to the word u = 1331421. At each step,
the rightmost column with less than its equitable filling is highlighted.

3Algorithm 2 was communicated to us by F. Aigner, C. Ceballos, and R. Sulzgruber.
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Input: A word u ∈ A.
Output: The rightmost equitable partition u∗ ∈ A∗.
Set u∗ = ·| · | · · · |u;
while u∗ is not an equitable partition do

Let j be the rightmost column of Mu∗ that is less than equitably filled;
Delete the leftmost letter of u∗j−1 and append it to u∗j ;

end
Return u∗;

Algorithm 2: rightmost : A → A∗.

· · · · �
� � · · �
� � · · �
· · · · �
� � � · �
� · · · �
· · · · �

→

· · · � ·
� � · · �
� � · · �
· · · · �
� � � · �
� · · · �
· · · · �

→

· · · � ·
� · · � �
� � · · �
· · · · �
� � � · �
� · · · �
· · · · �

→

· · · � ·
� · · � �
� · · � �
· · · · �
� � � · �
� · · · �
· · · · �

→

· · � · ·
� · · � �
� · · � �
· · · · �
� � � · �
� · · · �
· · · · �

→

· · � · ·
� · · � �
� · · � �
· · · � ·
� � � · �
� · · · �
· · · · �

→

· · � · ·
· · � � �
� · · � �
· · · � ·
� � � · �
� · · · �
· · · · �

→

· � · · ·
· · � � �
� · · � �
· · · � ·
� � � · �
� · · · �
· · · · �

→

· � · · ·
· · � � �
· · � � �
· · · � ·
� � � · �
� · · · �
· · · · �

→

· � · · ·
· � � � ·
· · � � �
· · · � ·
� � � · �
� · · · �
· · · · �

→

� · · · ·
· � � � ·
· · � � �
· · · � ·
� � � · �
� · · · �
· · · · �

→

� · · · ·
· � � � ·
· � � � ·
· · · � ·
� � � · �
� · · · �
· · · · �

.

Thus, the rightmost equitable partition of u is u∗ = 1|33| · |1|421.

4.3 The Successful Partition and Inverting the Modular Sweep Map

We can now state the following theorem:

Theorem 4.6. For u ∈ A, the rightmost equitable partition rightmost(u) is the unique successful
partition of u.

Proof. Apply Algorithm 1 to rightmost(u). Suppose it does not succeed. Leave all the
letters that were visited in place, and shift all the other letters right one block. One checks
that this yields an equitable partition which is further to the right than rightmost(u). The
key point here is that whenever Algorithm 1 finishes, the copies of � corresponding to
the remaining letters are equally distributed among the columns. The existence of an
equitable partition obtained by moving letters of rightmost(u) to the right contradicts the
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fact that rightmost(u) is rightmost, so our assumption that Algorithm 1 did not succeed
must have been wrong.

We conclude uniqueness of the successful partition using the cardinality argument
from [17]. We have already shown that every word in A has a successful partition. Since
the tree T ∗m in the proof of Lemma 4.1 contains every successful partition of words in A,
and since its Nth level has mN elements, we conclude that every word in A has a unique
successful partition.

From this, the main theorem follows.

Theorem 1.2. The modular sweep map is a bijection A → A.

Proof. We have inverted presweepm in Section 3.2, forget in Theorem 4.6, and the modular
sweep map may be written as the composition

sweepm = forget ◦ presweepm : A → A.

5 Applications

By taking m sufficiently large, the modular sweep map emulates the sweep map intro-
duced in [2], as we now explain.

Fix a := (a1, . . . , an) ∈ Zn, let e := (e1, . . . , en) ∈ Nn, and define AZ to be the set of
words containing ej copies of aj for 1 ≤ j ≤ n. For a word w = w1w2 · · ·wN ∈ AZ, define

the level of wj to be the integer `j := ∑
j
i=1 wi for 1 ≤ j ≤ N.

The sweep map is the function sweep : AZ → AZ that sorts w ∈ AZ according to its
levels as follows: initialize u = ∅ to be the empty word. For k = −1,−2,−3, . . . and then
k = . . . , 3, 2, 1, 0, read w from right to left and append to u all letters wj whose level `j is
equal to k. Define sweep(w) := u.

Theorem 5.1 ([2, Conjecture 3.3 (a)]). The sweep map is a bijection AZ → AZ.

Proof. Since the modular sweep map only permutes its input, it restricts to a bijection on
words with a specified content. We claim that by choosing m large enough, the modular
sweep map agrees with the sweep map when the letters aj with multiplicities ej are
replaced by their natural representatives aj (mod m) in {0, 1, 2, . . . , m− 1} (and all other
elements are given multiplicity 0), and similarly for the levels `j.

Let AN ⊆ AZ be the subset of words in AZ whose levels are all nonnegative. Fol-
lowing [2], we call AN the set of Dyck words. An argument generalizing [2, Proposition
3.2], suggested to us by M. Thiel, allows one to deduce that sweeping is also bijective on
Dyck words.

Theorem 5.2 ([2, Conjecture 3.3 (b)]). The sweep map is a bijection AN → AN.
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Finally, we consider the special case of Dyck words for an alphabet {a, b} of size
n = 2, such that a > 0 and b < 0 and where the letter a occurs −b times and the
letter b occurs a times. We shall write this set of Dyck words as Da,b—these paths are of
fundamental importance for the study of rational (type A) Catalan combinatorics [4, 3,
12, 5, 6, 16, 19, 10].

By [2, Table 1] and [2, Theorem 4.8, Lemma 4.10, Theorem 4.12], the zeta map may be
defined as a variant of the sweep map ζ : Da,b → Da,b that sorts w ∈ Da,b as follows:
initialize u = ∅ to be the empty word. For k = 0, 1, 2, . . . and then k = . . . ,−3,−2,−1,
read w from left to right and append to u all letters wj whose level `j is equal to k. Define
ζ(w) := u.

We have the following corollary of Theorem 5.1, which is of independent interest.

Corollary 5.3 (Zeta for Rational Dyck Paths). The zeta map is a bijection Da,b → Da,b.

Proof. For w = w1w2 · · ·wN, let rev(w) := wN · · ·w2w1 and −w := (−w1)(−w2) · · · (−wN).
Then the zeta map may be computed as

ζ(w) = − (rev ◦ sweep ◦ rev) (−w).

Since sweep is a bijection, we conclude that ζ is a bijection.
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